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Errata:
1. Equation (1) should be changed to

n~2
[ f@dz = (T sy + LELE ool L M ey 4 fa1) + Hlanea) - Hlow)

=1

2. Equation (2) should be changed to

n-2
T2 () = H(S f(z) + f(zo) + f(:z:,,-

=1

)+hZa:(f (Zn-)) = f(z}))
=1

3. The weights tabulated in Section 7.1 are ~3%,, and not 3% as they should be.




A group of quadrature formulae is presented applicable to both non-singular functions and
functions with end-point singularities, generalizing the classical end-point corrected trape-
zoidal quadrature rules. We present an algorithm for the construction of very high-order
end-point corrected trapezoidal rules, taking advantage of functional information outside
the interval of integration. The scheme applies not only to non-singular functions, but also
for a wide class of functions with monotonic singularities. Numerical experiments are pre-
sented demonstrating the practical usefulness of the new class of quadratures. Tables of

quadrature weights are included for singularities of the form s(z) = log(|z|), s(z) = |z|* for
a variety of values of A.
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1 Introduction

The trapezoidal rule is known to be an easy and numerically stable means for numerical in-
tegration. If a function is periodic and analytic on the interval of integration, the trapezoidal
rule converges exponentially fast (see, for example, [7]). However, for non-periodic functions
the trapezoidal rule is second order convergent, and end-point corrections are often used to
improve the convergence rate. A standard end-point corrected trapezoidal rule is fourth order
convergent, and is given by the formula

n~2
[ t@da =T sy + L) L R po )4 )+ fena) - flan)

=1

(1)
where, h = (b—a)/(n-1)and r; =a+ ih fori =0,1,2,...,n — 1 (sce, for example [1]).

More recently, the Euler-Maclaurin formula is used in [4] to obtain a high-order end-point
corrected trapezoidal rule of the form

n-2 m
T3 = 3 fo) + L) 3™ 4 ) - 1)), @)
=1 i=1

where a = (a3, ay, ..., an) are coefficients such that

b
120 - [ Sz 1< ®)
for some ¢ > 0.

The scheme of [4] provides satisfactory quadratures upto order 12; for higher orders, the coeffi-
cients a grow rapidly, rendering the scheme useless. In this paper we develop a different class of
end-point corrected trapezoidal rules, whereby the growth of correction weights is suppressed,
enabling the construction of end-point corrected trapezoidal rules of arbitrarily high order for
non-singular functions.

In [5], end-point corrected quadrature formulae are developed to approximate definite inte-
grals of singular functions f : [a,b] = R?! of the form

f(z) = ¢(z)s(z) + (), (4)

and
f(z) = ¢(z)s(z), (5)

where a < 0 < b, ¢(z),¥(z) € c*[a,b], and s(z) € c[a,b] is an integrable function with a
singularity at 0. The procedure developed in [5] provides satisfactory quadratures only upto
order 4; for higher orders, the quadrature weights grow rapidly, also rendering the scheme
useless. In this paper we construct a different class of end-point corrected trapezoidal rules,
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whereby the growth of quadrature weights is partially suppressed for functions of the form
(4), obtaining useful quadratures of order upto 12; and completely suppressed for functions
of the form (5), providing quadratures of arbitrarily high order. Moreover, we obviate the
programming inconvenience associated with the procedure developed in [5], which requires that
functional information be tabulated on a grid finer than that required for the uncorrected
trapezoidal rule.

Remark 1.1 The approach of this paper is somewhat related to that of [9]. However, [9]
constructs quadratures in higher dimensions, and these quadratures are of relatively low order.
In this paper, we construct one-dimesional rules of very high order. Furthermore, most rules
of this paper are “standard” in the sense that the correction coefficients do not depend on the
number of nodes in the trapezoidal rule being corrected, or on the sampling interval.

2 Mathematical Preliminaries

In this section we summarize some well-known results to be used in the reminder of the paper.
Lemmas 2.1, 2.2 and 2.3 can be found, for example, in [1].

Definition 2.1 Suppose that a,b are a pair of real numbers such that a < b, and that n > 2 is
an integer. For a function f : [a,b] — R?, we define the n-point trapezoidal rule T,(f) by the

formula
n-1

T(f) = (Y fla+ in) - (LELED), ©)
1=0
with
h=(b-a)/(n-1). (M

The following lemma provides an error estimate for the approximation to the integral given by
the trapezoidal rule. Along with Lemma 2.2, it can be found, for example in [1].

Lemma 2.1 (Euler-Maclaurin formula) Suppose that a,b are a pair of real numbers such that
a < b, and that m > 1 is an integer. Further, let By denote the Bernoulli numbers

-1 1

B, = ,B4=§'6,BG=Z§,---,- (8)

1
6
If f € ¢ *2[a,b] (i.e., f has 2m+2 continuous derivatives on [a,b]), then there ezists a real
number £, with a < £ < b, such that

b m 32/ 2m+42
[ Heyie =Tty + 3o 2P -0 - fi-N(a)) - Em ). (9)
a ’=1 . .




The following well-known lemma provides an error estimate for Lagrange interpolation.

Lemma 2.2 (Lagrange interpolation formula) Suppose that a,b are a pair of real numbers such
that a < b, m > 3 be an odd integer, and f € c™[a,b]. Furthermore, let h be defined in (7), and
f be tabulated at equispaced points, z; = -"—'59- 4+ kh. Then for any real number p there exists a
real number £, —mh < £ < mh, such that

{mzl)
flza+ph)= D  AP®)f(zk) + Rm-1, (10)
k:—(—-—l_ ";‘1
with
AT(p) = (1) T+ ™t o, (11)
EETRET R (p-F) b
and —t
R = — 11 -k, (12)
=

Lemma 2.3 If f : [a,b] = R! is a function satisfying the conditions of Lemma 2.2, and the
coefficients DT}, are given by the formula

m 6(2l-l -0
DFL = S (AR () P, (13)
then
FP(zo) = Z ’ h2 f(-'ck) +O(h™), (14)
k=-221 B
for any m,i such that -5 <k < 22l and 1<k < 251
Proof. The proof is as an immediate consequence of (10) and (13). a

Lemma 2.4 Suppose that m,l, k are integers, and the coefficients al; are defined by the recur-
rence relation

a, = 1, (15-a)
a, = 1, (15-b)
ai":“ = (k-kz)azklll+ak—ll—l+azl-‘-ll 29 (15-¢)
apf? = afia- (O, (15-d)




with ay = 0, for allk <0, or 1 <0, orm < 1. Then

(-1

Ap(p) = (Ln_z._l n k)!(m2 1 k)' Z ak Ip ’ (16)

for any odd m > 3,1 < k < 25l and AP (p) is defined by (11).
Proof. Due to (11),

(=17
m m
k(P) = 5z = Ci*(p), (17)
(2L 4 k) (BT — k) *
where
1 m=-1
Ci(p) = H (p+ = - 1). (18)
Thus it is sufficient to show that s
BF
Ci(p)= Y afup’. (19)
=1
This will be shown by induction. Indeed, if m = 3 then, due to (18),
Ci(p) =9 +p, (20)
which is equivalent to (15-a),(15-b).
Assume now that for some m, k such that ~2531 < k< ==l
=
CR(p) = 3 afup. (21)
=1

Combining (18) and (21), we have

Cr¥ip) = (p +1+—1)(p—2‘i1)2 app'

m+1 5
@ - (P2 Y e
=1

m—1 me—
=5 5
m+1
= Y apptt- (—"2'—")2 3 e, (22)
I=1 =1
which is equivalent to (15-d).
Now, assume that for some &
k
C:k+l(p) - Z“iﬁﬂpl' (23)
=1




Combining (23) and (18), we have
k
CH2(0) = (p=-k)p~(k+1) YT afi*'p
I=1

k
= (P +p- (K + k) oy

=1
k k k 2% .
= Zazﬁ+1pl+2 + zaiﬁﬂplﬂ - (k2 + k)z ak,l+lp ,
=1 =1 =1
(24)
which is equivalent to (15-c). o
Lemma 2.5 Suppose that m > 3 is odd. Then,
m=1
(=17 .
D = Tai—1(2i — 1), 25
i,k (_n_;z—_l +k)!(m2__1 _k)!ak,2l 1( i ) ( )
for any k,i such that —"‘T'l k< ﬂ;—l, and1<i< 1"—{-1,
with the coefficients a}; defined by the recurrence relation in Lemma 2.4.
Proof. Substituting (16) into (13), we immediately obtain
mo- (~1)"F +k 3(2;'?-1) mz—l P
T R - B &
m-~1
(—1)—2—+k . ]
(o + T — ke (2= =0
O
The following six lemmas provide identities which are used in the proof of Theorem 3.1.
Lemma 2.8 Ifk > 2 is an integer and ay; is defined in Lemma 2.4.
Ot < 1a+2)t-afity ), (27)

foralll=1,2,...,2k- 3.

Proof.
Ifk=2,and l=1then |(1)!-a3,]=2, |(3)! 4} |= 12, and therefore (27) is obviously true.
Now, assume that

|(-aff ] < [+ -aith ), (28)
forsomek >2andalll=1,2,...,2k - 3.
Now, due to (15-a), (15-b), (15-c), and (15-d),

(- a35¥5 = (((k + 1) = (k+ 1)D)alE* 4 okt + a2H)) - (1), (29)




and
(U+2)0afiilhe = (R + 1) = (k+ DD)afis + ol +alf") (421 (30)
Finally, combining (28), (29), and (30) we easily obtain
O-af33 1 < 10+ 2 afiiie 1) (31)
foralli=1,2,...,2k - 1. 0

Lemma 2.7 Ifk > 2 is an integer, and al’ is defined in Lemma 2.4 then

F@Oafy] < 10+2)! ey, | (32)

foralm>2k+1andl=1,2,...,2k-3.

Proof. Lemma (2.6) establishes the base case, i.e., that (32) is true when m = 2k 4+ 1.
Now, assume that

LAY eyl < 10+2)af4a s (33)

for someodd m >2k+1,and all [ =1,2,...,2k- 3.
Now, due to (15-a), (15-b), (15-c), and (15-d),

O a2 = (afu_, — (22520 - (), (34)
and
(4 2)t ot = (af = (g Vafua) - (1 + 20 (35)
Finally, combining (33), (34), and (35) we easily obtain
OF a2 ] < 1(+2)! af, |, (36)
forall{=1,2,...,2k- 3. a

Lemma 2.8 If m,k are integers such that m > 3 is odd, and - 251 < k < 271, then
| (1)} ey I<] (8) - aks I<| (B)! - afs |< .o <[ (m = 2)! -0l o |- 37)

Proof. This Lemma follows directly from Lemma 2.6 and Lemma 2.7 o

Lemma 2.9 Ifm > 3 is odd, then

(m - 1)(m-2)! < (2r)™-? .

AR 4 o




Proof. If m = 3 then obviously 1 < 12—’4')3
Now, assume that for some odd m > 3,

(m=1)(m-~2)! < (2r)m-1?
2P 4
Obviously,
o (m+1)(m)  4m
({mfly2 T (m+1)

and combining (39) and (40) we obtain

< (2w)2,

(m +1)(m)(m ~ 1)(m - 2)! < (2m)™-1

(C DT i

which is equivalent to
(m + 1)(m)! < (27)m+1
A S 4

Now, the conclusion of the lemma is an immediate consequence of (39) and (42).

Lemma 2.10 If m > 3 is odd then

(2m)m-!
4 ’

for any k,i such that - 251 < k< 221 and1<i< 25l

ID:‘I: <

Proof. Combining Lemmas 2.5, 2.6, 2.7, and 2.8, it is easy to see that
| D% | < | DTy | < ... < |D’;.3__,‘k|.
Consequently, it is sufficient to show that

(2m)m-1

1280, 1< 4

First we observe that (obviously) for any k such that —251 < k < 221,

k(m - 2)! < (m-1)(m-2)!
=y I (=)
Then, we combine (15-a), (15-b), (15-c), (15-d), and (25) to obtain
| D k(m - 2)!

2 = ELFRI(ET k)

Now, (45) follows immediately from the combination of (46), (47), and Lemma 2.9.

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)




Lemma 2.11 For anyl > 1 the Bernoulli number By satisfies the inequality

By 4

— —_— 4
@il < @ (48)
Proof. As is well known (see for example, [1]), for any ! > 1
(=122 & 1
By = ————=) =, 49
a (2r)2 7 (49)
and
ff 1 <2 (50)
—_— L D,
]
k=1 k?
Now, the conclusion of the lemma is an immediate consequence of (49) and (50). a]

The proof of the following lemma can be found in [5)].

Lemma 2.12 Suppose that m > 1, s € ¢™(0, 1] possesses a finite integral on the interval [0, 1],
and that s{™)(z) is monotonic in some neighborhood of 0. Then the product z-8(z) ts bounded on
[0,1). Suppose further that w € ¢™[0,1] is such that w(0) = w'(0) = w" (0) = ... = w(™}(0) = 0.
Then the function y(z) = s(z)-w(z) is defined on the closed interval [0, 1), and ¥(0) = ¥'(0) =
¥'(0) = ... = v(™)(0) = 0.

3 End-point Corrections for Non-singular Functions

3.1 End-point corrected trapezoidal rules

While the authors have failed to find the contents of this section in the literature, it is an
immediate consequence of well-known facts from classical analysis. We present it here for com-
pleteness, and because we found the resulting high-order quadrature rules quite useful (see
Section 7.1).

Suppose that n, m, are a pair of integers with m > 3 and odd, and n > 2. Further, suppose that
a, b are a pair of real numbers such that a < b, h = (b—a)/(n—1), and f : [a~mh,b+mh] — R!
is an integrable function. We define the corrected trapezoidal rule T for non-singular func-
tions by the formula

m-1

mot
Tpa(f) = Ta(f)+h Y (f(b+kh) - f(a+ kh))AT. (51)

1

The real coefficients S are given by the formula

ﬂ;c" = Z -'('2'“[')'!_’ (52)




where D}, are defined in (13) (also, see (25)) and By are the Bernoulli numbers.

We will say that the rule Tjn is of order m if for any f € ¢™[a ~ mh,b + mh], there exists a
real number ¢ > 0 such that

b
| Tgn(5) - [ @)z 1< . (53)

Theorem 3.1 If m > 3 is an odd integer then for any k such that — 251 < k < 251,

m-—1

| B 1< (54)
where the coefficients Bi* are defined in (52).
Proof. Combining Lemma 2.10 and Lemma 2.11 we immediately observe that
Ik
k. 55
55 b (55)
and hence .
Z DB -
m Lkt m-—1 56
| "g @ <2 (56)
o

Remark 3.1 A somewhat more involved argument shows thkat in fact |87 < 1 for all k,m;
empirically this can also be seen from the tables in Section 7.1 below. However, for the purposes
of this paper (56) is sufficient.

Theorem 3.2 Suppose that m,n are a pair of integers with m > 3 and odd, and n > 2.
Further, suppose that a,b are a pair of real numbers such that a < b. Then, the end-point
corrected trapezoidal rule Tjn is of order m, i.e., for any f : [a — mh,b+ mh] — R} such that
fla — mh,b+ mh] € c™[a — mh, b+ mh), there ezists a real number ¢ > 0 such that

b
| Tga(1) - [ Slddz 1< 5. (57)
Proof. Combining (52) and (51), we obtain
m-l B
Ti(f) = Tif)+h 3 (f(b+kh)—f<a+kh))2: (;,)."
k:—!‘%'—l =1

T hBy, G DR(S(b+kh) - f(a+ kh)

= LN+ Y (2,)§‘(__22 e ) (58)




Combining (14) and (58), v-e have

n - h¥B - - -
Bn(f) = Ta(f) + Z g 00 - fE @) - 2875, (59)
Finally, combining (59) with Lemma 2.1, we observe that for some a < € < b,
- h™Bm o
Tgn(f) = [ )iz + 288D + - 0m o), (60)
and the theorem immediately follows from (60). 0

Remark 3.2 It is easy to see that for m > 3 and odd, and any k such that —"‘—2‘1 <k< ""
T = =D}, and D7 = 0 (due to (13)), and hence g™ = -G and G5 = 0 (due to 52)
Now, instead of (51) one could define the end-point corrected trapezoidal rule by the formula

m~—1

Tom(f) = Ta(f) + B Y_ (f(b+ kh) ~ f(b— kh) — f(a + kh) + f(a - kR))BF.  (61)
k=1

4 End-point Corrections for Singular Functions

In this section we construct a group of quadrature formulae for end-point singular functions,
generalizing the classical end-point corrected trapezoidal rules. The actual values of end-point
corrections are obtained for each singularity as a solution of a system of linear algebraic equa-
tions. All the rules developed in this section are simple extensions of the corrected trapezoidal
rule Tg developed in the preceding section.

A right-end corrected trapezoidal rule Tsm is defined by the formula

n-2 ‘"‘T-l'
Trem(f) = (f('t"'l) +3 f(z)) + kD (f(b+kh) - f(b- kh))AT, (62)
=1 k=1

where f(0,b+ mh] — R! is an integrable function, n,m are a pair of natural numbers with
m 2> 3 and odd, the coefficients B7* are given by (52), and

b
h = n-1’
T = th. (63)
We will say that the rule TR;m is of right-end order m > 3 if for any f € c¢™+1[0, b 4+ mh) such
that £(0)[214z = f'(0) = ... = f{™)(0) = 0, there exists ¢ > 0 such that
b c
| Thgn() - [ f@)dz 1< . (64)

10




It easily follows from Theorem 3.2 that TR;m is of right-end order m.
Similarly, a left-end corrected trapezoidal rule T}';m is defined by the formula

m—!

Tign($) = nLEE) L 3 10y 4 hZ( F(=b+kh)+ F(=b— KRBT,  (65)

=1

where f[~b— mh,0) — R! is an integrable function, n,m are a pair of natural numbers with
m > 3 and odd, the coefficients S* are given by (52), and h,z; are defined by (63). We will
say that the rule TPgm is of left-end order m > 3 if for any f € ¢™*![-b — mh,0) such that

fO=f0)=..= f(’")(O) = 0, there exists ¢ > 0 such that

|Tgam(1) - [ Hade 1< (66)
It also easily follows from Theorem 3.2 that T7sm is of left-end order m.

Suppose now that the function f(~kh,b+ mh] — R! is of the form

f(z) = ¢(z)s(z) + ¥(z), (67)

with ¢, ¥ € c*(—kh,b+mh], and s € c¢(—kh,b+ mh) an integrable function with a singularity at
0. For a finite sequence a = (@—k, a_(k-1), @1, 01, ..., @) and TRgm defined in (62), we define
the end-point corrected rule T;m by the formula

k
Toom(f) = Thom() +h 3 @;f(25), (68)
j==k,j#0

with h = b/(n - 1), z; = jh.
We will use the expression TJ;m with appropriately chosen a as quadrature formulae for
functions of the form (67), and the following construction provides a tool for finding a once
B™ = (B, B, ...,fm-1) is given, so that the rule is of order k, i.e., there exists a ¢ > 0 such
that ’

b
| T2gn(D - [ @)z < 7. (69)

For a pair of natural numbers k, m, with k > 1 and m > 3 and odd, we will consider the following
system of linear algebraic equations with respect to the unknowns a7, with j = 0, £1,42,..,, +k:

k
. 1 b . .
z z;."‘a;‘ = Z./o z;’ldz-T,'{ﬁm(z' 1), (70)
j=-kvj¢o
fori=1,2,...,k,and
k . 1 k-
Y.zt ts(ei)e) = 5 / 2i~k-15(2)dz — Thpm(z**15(2)), (71)
j==k,j#0

11




fori=k+1,k+2,..,2k, with h = b/(n - 1), z; = jh and TRsm defined by (62). We denote
the matrix of the system (70), (71) by A"*, its right-hand side by Y,** and its solution by
oy = (a'_‘_k,a'_‘_(k_l),...,a',‘_l,a;‘, ...;a}). The use of expressions Tgngm as quadrature formulae
for functions of the form (67) is based on the following theorem.

Theorem 4.1 Suppose that a function s : (~kh,b+mh] — R! is such that s € c*(—kh,b+mh]
and s* is monotonic on either side of 0. Suppose further that the systems (70), (71) have
solutions (aﬁk,a’_‘(k_]),a'_‘l,a’l‘, «.ya}) for all sufficiently large n, and that the sums

Z (e})? (72)
j=—k,77#0

are bounded uniformly with respect to n. Finally, suppose that the function f : (—kh,b+ mh] —
R} is defined by (67). Then, there ezists a real ¢ > 0 such that

| Toagn() = [ F2)dz 1< 5 (73)
for all sufficiently large n.

Proof. Applying the Taylor expansion to the function f at z = 0 we obtain

f(z) = P(f)(z) + Re(¢)2)s(z) + Ri(¥), (74)
where
G)(0) .

P = sy Lot + z; 0, (75)

1=0 .

and Ri(¢), Ri(v) are such functions [—kh,b+ mh] — R! that
RL(¢)(0) = Ry()(0) = ... = R¥)(8)(0) = 0, (76)
RL($)(0) = Ry (¥)(0) = ... = RP($)(0) = 0. (17)

Substituting (74) into (73), we obtain

b 1 -
| TongaN) - [ f@)2] S 1 Tong (PUN - [ Pz ] +
| T2agn((RA(8) - 3) 4 Ba() ~ [ (Bu(8@)s@)(@)+ Ru(e D)z . (78)
Due to (70), (71)

Tiog (P - [ PU &)z = 0, (79)

12




and we have

b
Zoan(F) - [ Fla)da 1<
| RT} i(s- R(9)) — Jo(s - Ri(#))(z)dz |
+ | RTE (Re(¥)) - Jo(Ri(¥))(z)dz |
+ |22, (R()(Gh)s(GR)a}) + (Re(¥)(GR)a) | . (80)

Due to (77) and (64), there exists ¢; > 0 such that

b &
| AT (Be(¥) - [ (B2} < 5. (81)

Combining (76), (64), and Lemma 2.12 we conclude that for some ¢; > 0

b c2
| RT5a(s - Bu(@) - [ (- Ri(@))(2)dz |< . (82)

Finally, combining (76), (77) and Lemma 2.12 we conclude that for some c3 > 0,

k
| X (RUS)im)s(ih)a}) + (R($)(GR)e) 1< 3 (83)
j==~k,j#0

Now, the conclusion of the theorem follows from the combination of (81), (82), and (83). O

4.1 Convergence Rates for Singularites of the forms |z|* and log(|z])

For the remainder of the paper, ¢1, 2, ..., ook will denote functions (—kh,b+ mh] — R! defined
by the formulae

$i(z) = 277, (84)
fori=1,2,...,k,and
¢i(z) = z"F1g(z), (85)

fori=k+1,k+2,...,2k. The following lemma is a particular case of a well-known general fact
proven, for example, in [8].

Lemma 4.2 If s(z) = z* with A\ a real number such that 0 < |A| < 1, then the functions
&1, P2, ..., P2k constitute a Chebyshev system on the interval (—kh,b+mh] (i.e., the determinant
of the 2k x 2k matriz B;; defined by the formula B;; = ¢i(t;) is non-zero for any 2k distinct
points on the interval (—kh,b+ mh}).

Theorem 4.3 If s(z) = |z|* with 0 < |A| < 1, then the convergence rate of the quadrature rule
T ng,, is at least k.

13




Proof. It immediately follows from Lemma 4.2 that the matrix of the system (70), (71) is
non-singular. We rescale the system (70), (71) by multiplying its ith equation by ~r, for
i=1,2,..,k and by gtz for i = k + 1,& + 2,..., 2k, obtaining the system of equations

k
: 1 1 ;
S iar = ([ 5 - TRam(e ), (86)
j=2ki#0 °
i = 1,2,...,k, and
koo 1 b '
> jimkm1agn o ___l:_A(/ k1A dr TR (2511, (87)
j=—kj#0 Rt o

fori=k+1,k+2,...,2k

We will denote the matrix of the system (86), (87) by By, and its right hand side by Z¢. Ob-
viously, By is independent of n, and using Theorem 3.2 we observe that if m > k vhen |Z7| is
bounded uniformly with respect to n. Now, due to Theorem 4.1, the convergence rate of T;jngm
is at least k. o

The proof of Theorem 4.3 can be repeated almost verbatim with s(z) = log(|z]), instead
of s(z) = |z|*, resulting in the following theorem.

Theorem 4.4 If s(z) = log(]z|) then the convergence rate of the quadrature rule Tjng  is at
least k.

4.2 Asymptotic behaviour of correction coefficients as n — oo

An obvious drawback of the expressions Tjsm as practical quadrature rules is the fact that
the weights a® = (a®,,...,a%;,a},...,a}) have to be determined for each value of n by
solving a system of linear algebraic equations. For singularities of the form s(z) = log(|z}),
s(z) = |z|* we eliminate this problem by constructing a new set of quadrature weights vy =
(Y-kyY=(k=1)» ++» T=15 715 ---» 7k), independent of n, and such that the quadrature rules T;‘k gm are
still of order not less than k.

Lemma 4.5 Suppose that 8 = (87*,07%,...,BT_,) is such that the right-hand order of the

quadrature formula TRgm is m. Further, let z > 0 be some real number. Then for any integers
p,q such that p < g,

1 T® z b z 1 ¢ z b z m=z—1 8
| (Thon (") - /0 o*dz) = ft (Tham (") - /o z*dz)|= O(™-*1),  (88)
where hy = b/(p~ 1), and by = b/(qg — 1).

Proof. Due to Theorem 3.2, there exist real ¢;,c; > 0 such that

b k
(Thm(z") - /0 2*dz) = cth™ ~ by 3 ()", (89)

i=-k
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and

b k
(Tgm(z*) - / z*dz) = k™ —hy 3 (jho)". (90)
Y i=—k

Now, combining (89), (90) we obtain

| Iilq,-r(T:;ﬁm(z’) - fé’ z%dz) - R%;T(Tl%ﬁm(xz) — f(;’ zdz) |

1 ko1 ke
= h—ﬂ.'l'(clh;" ~hy Z (Fhp)*) - ‘hT,.T(CZh? ~ hq Z (Ghe)®)
P j==k q 1=—k

k k
(ahp™ = 30 (1)) = (e2hd™*71 = 30 (4)")

j==k j=~k
= ¢ hm-z-l —c hm-z-l
1%p 2%

= O(hp—*7). (91)

Theorem 4.6 Suppose that k,m are two natural numbers such that k < m — 1 and that
B = (BT, BY, ...,Bn_, ) is such that the right-hand order of the quadrature Tpgm is m. Suppose

2
further that s(z) = |z|* with 0 <| A |< 1, and that the coefficients (a2, aZ_,),aZ,f, e @f)
are the solutions of the system (70),(71).Then

1) There ezists a limit

Hmn-booa? = (92)
for each i = 1,2,...,2k.
2) Foralli=1,2,...,2k,
n 1
|} =% I= O(—p): (93)

3) ¥i do not depend on m, as longasm > k + 1.
4) The quadrature formulae T7sm are of order at least k.

Proof. Suppose that p, ¢ are two natural numbers, and p < g. Obviously,

af = (B,,)“Z,’:,
o = (B)Z,
o —a? = (By)NZP - 2ZY) (94)

Due to Lemma 4.5, there exists ¢ > 0 such that

128 - Z}|| < ——. (95)

Pm
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and by combining (94), (95), we see that for some d > 0
a?f - af — 96
I ” < p"‘"‘ . (96)

Since the weights o™ constitute a Cauchy sequence, they converge to some limit

7 = (Y=k» T=(k=1)» -++» T=1> 71, -+, Tk), Which proves 1, and 2, 3, 4 follow easily. 0
The proof of the following theorem is a repetition, almost verbatim, of the proofs of the Lemma
4.5 and Theorem 4.6

Theorem 4.7 If under the conditions of Theorem 4.6 we replace s(z) = |z|* with s(z) =
log(|z]), conclusions 1-4 remain correct.

For singularities of the form |z|* and log(|z|), Theorem 4.6 and 4.7 reduce the quadratures
T.sm to the more “conventional” form

b k
[ 1@ = Tpge(f) = Then(N+h 3 vif(@i): ©7)
J=—k,j#0

Remark 4.1 The whole theory in sections 4.1-4.2 has been constructed for functions with a
singularity at the left end of the interval. Obviously, an identical theory holds for functions
with a singularity at the right end of the interval. However, in all formulae the expression Tg;m
has to be replaced with T sm (see (62), (65)).

4.3 Central Corrections for Singular Functions

In this section, we will be considering functions f[—b — mh,0) U (0,5+ mh] — R? of the form
f(z) = ¢(z)s(z) + ¥(2), (98)

with @, 9 € ¢/[~b - mh,b+ mh], and s € ¢[-b~ mh,0)U (0, b+ mh] an integrable function with

a singularity at 0. We will define the central-point corrected trapezoidal rule

!
Tlpm(f) = Tham(f) + TPam(f) + A Y p3(f(z;5) + f(z-4)), (99)
i=t

with h, z; defined by(63), B defined by (52), Tfsm, T7sm defined by (62) and (65) respectively,
and p" = (u}, 43,...,47') an arbitrary sequence of length I.

We will use the expression Tj.3m with appropriately chosen u" as quadrature formulae for
functions of the form (98), and the following construction provides a tool for finding u™ once
B™ is given, so that the rule is of order 2l, i.e., there exists some ¢ > 0 such that

b
| Tgn() - [ 2z |< 251 (100)
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For a pair of natural numbers {,m, we will consider the following system of linear algebraic
equations with respect to the unknowns [T

i

. b, ; i
Z 1‘?'-2#? - /bz"’"zdz — Tgm(z%2) = Tigm(2%-2), (101)
1=1 -

fori=1,2,...,1,and

Lo b, : :
> z¥ ()t = / b:tz"'?'z's(z)da: - TRem (222" Us(z)) — TEpm(z% "2 %s(2)), (102)
=1 -
fori=1+1,1+2,...,2,with h=b/(n-1), z; = jh.
The proofs of Theorem 4.8, 4.9, and 4.10 are almost identical to those of Theorems 4.1, 4.3,
and 4.6 respectively, and are thus stated below without proof.

Theorem 4.8 Suppose that a function s : [-b — mh,0) U (0,b + mh] — R! is such that s €
c'[-b — mh,0) U (0,b + mh) and s* is monotonic on either side of 0. Suppose further that the
systems (101), (102) have solutions (p'j,,u’_‘(,_l),p’jl,p?, <y u}') for all sufficiently large n, and

that the sums .

> W) (103)

J=—llJ¢0
are bounded uniformly with respect to n. Finally, suppose that the function f :[-b— mh,0)U
(0,b+ mh] — R! is defined by (98). Then, there exists such ¢ > 0 that

b ¢
| Tiogn(5) - [ f@)dz 1< 25 (104)
for all sufficiently large n.

Theorem 4.9 If s(z) = |z|* with 0 < |A| < 1, or s(z) = log(|z]|), then the convergence rate of
the quadrature rule Tjng s at least 21.

Theorem 4.10 Suppose that k,m are two natural numbers such that k < m — 1 and that
g = (BT, BT, ""ﬁg{—’ ) is such that the right-end order of the quadrature Trgm s m, and the

left-end order of the quadrature Trpm is m. Suppose further that s(z) = |z|*, 0 <| A|< 1, or
s(z) = log(|z|), and that the coefficients (B2 B2 (k1) B0 BT ..., u}) are the solutions of the
system (70),(71).Then

1) There ezists a limit

limg oot = i, (105)
for each i =1,2,...,2k.
2) Foralli=1,2,..,2k,
1
| 7 = i I= O ) (106)

3) pi do not depend on m, as longasm > 1+ 1.
4) The quadrature formulae T} sm are of order at least 21.
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For singularities of the form |z|* and log(|z|), the Theorem 4.10 reduces the quadrature to the
more “conventional” form

b l
/_b f(2)dz = Tigm(f) = TRam(f) + TEam(f) + 2 1i(f(25) + f(2-3))- (107)
i=1

4.4 Central Corrections for Singular Functions f(z) = ¢(z)s(z)

In this section we construct a quadrature formula specifically for the purpose of approximating
definite integrals of functions of the form

f(z) = ¢(z)s(2), (108)

where ¢(z) : ¢?[-b — mh,b+ mh] — R!, and s € ¢[-b— mh,0) U (0,b + mh] an integrable
function with a singularity at 0. For a finite sequence p = (po, p1, 92, ---» Pp), and Trgm, Trpgm
defined in (62) and (65) respectively, we define the corrected trapezoidal rule T;.sm by the
formula

P
pagm(f) = TRem(f) + Them(f) + h 3 p7(8(3h) + &(~5h)))- (109)
Jj=0
For integers n,m,p where n > 2, p > 1, m > 3 and odd, we will consider the following system
of equations with respect to the unknowns p" = (pg, p7, 3, ..., Pp):

i z?"zp;‘ = %/bb(a:zi'zs(x))dz - Tﬁgm(:cz""s(z)) - TEgm(a:zi'zs(:c)), (110)
i=0 -

where, h = b/(n-1),z; = jh,and i = 1,2,...,p+ 1.
The proof of the following theorem is almost identical to the proof of Theorem 4.1.

Theorem 4.11 Suppose that n > 2 is an integer, and h,z; are defined by (63). Further,
suppose that f(z) = ¢(z)s(z) where ¢ : [-b — mh,b + mh] — R!, and s € c[-b— mh,0)U
(0,b + mh) is an integrable function with a singularity at 0. Finally, suppose that the system
of equations (110) has a solution (3, p%, ..., pp) for any sufficiently large n and that the sums

;’=o(p;-‘)2) are bounded uniformly with respect to n. Then there ezists a real ¢ > 0 such that

b
T - [ f@)z 1< 5. | (a11)

The proof of the following theorem is almost identical to that of Theorem 4.6, and is omitted.
Theorem 4.12 Suppose that s(z) = log(|z]|). Then for all n > 2p, the system (110) has a
solution p™ = (pg, p1, P3, .-, Pp), and
1 b n n ?
po = |, log(lzl)dz ~ Thgmlog(lzl) ~ TEgmlog(lel) = 3 pi- (112)

j=1
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Fur:hermore, there ezist such real numbers py, pa, ..., pp and a real d > 0 such that

limg0p] = pj, (113)
and
|6} = pi|< d-h™ (114)
for all j = 1,2,...,p. Finally, there ezists a real ¢y such that
»
| o5 — (co + 0.5log(h) ~ > pj |< d - A™P (115)
=1

Jor alln > 2p.

Remark 4.2 Formulae (114), (115) indicate that for sufficiently large m, the convergence
of p},03, ..., to p1,p2,...,pp is virtually instantaneous, and that (115) is a nearly perfect
approximation to p3. The numerical values of py, pa, ..., pp can be found for various values of p
in Section 7.4. Also, note that ¢y does not depend on p, and its numerical value (to 16 digits)
is —.9189385332046727.

The proof of the following theorem is similar to the proof of Theorem 4.6.

Theorem 4.13 Suppose that s(z) = |z|*, with ) a real number such that 0 < |A| < 1, and
(110) has a solution p™ = (pg,p%,p3,...,p5). Then for all n > 2p, the quadrature weights
PG+ P+ PG, -, Py are independent of n.

4.5 Corrected trapezoidal rules for other singularities

In the preceding sections quadrature formulae are provided for singular functions of the form

f(z) = ¢(z)s(z) + ¥(z), (116)

and
f(z) = ¢(z)s(z), (117)
where the singularity s(z) is of the form log(]z]), or z* (0 < |A| < 1). Obviously the procedure

developed in the preceding sections can be applied to other singularities. As an example, we
construct a quadrature formula to approximate the definite integral,

* fe)dz, (118)
where f is of the form (117), 1
8($) = -\/ﬁ’ (119)

with a > 0, and ¢(z) € c*[~a — kh,a + kh] and even (i.e., ¢(~z) = ¢(2)).
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Remark 4.3 The choice of the singularity (119) is dictated by the frequency with which it is
encountered in the numerical solution of partial differential equations, in signal processing, and
other areas. Otherwise, almost any integrable, monotone singularity could have been chosen.

We define the corrected trapezoidal rule T;» by the formula

n-2
T = 3 flz)+ hZV"f(y.), (120)
j=—(n-2) =1

where h = af/(n - 1), 2; = jh, yi = a—hifor 1 < i < k/2, and y; = a + h(i ~ k/2) for
k/2+1 < i < k. We will use the expression T2 with appropriately chosen v™ as quadrature
formulae for functions of the form (117), and the following construction provides a tool for
finding v™, so that the rule is of order 2k — 2, i.e., there exists a real ¢ > 0 such that

1T - [ f@ddz |< iy (121)

For an even integer k > 2, we will consider the following system of linear algebraic equations
with respect to the unknowns v?, with j = 1,2,...,k:

zk: y?(i-l) o a zz(:-—l) _ nz-:z A zf(’ 1)

=1 Va? —2? E —e vat = ”2 I=—(n-2) —z,
with h = %=, z; = jh,y; =a—hjforall 1 < j < k/2, and y; = a + h(j — k/2) for all
k/2+1 < j < k. It is easy to see that the linear system (122) is independent of the length

of the interval a, and the unknowns v,v%,...,v} can be determined by solving the system of
equations

(122)

zlv: y20- ‘) (.—1) ni2 ?(t-—l)
- (—27) (123)
mvi-a? Vi-22 I=—(n—2) -af"

with h = &5, z; = jh,yj = 1~ hjforall 1 < j < k/2,and y; = 1+ h(j — k/2) for all
k/2+1<j<k

The proof of the following theorem is quite similar to the proof of Theorem 4.1, and is omitted.
Theorem 4.14 Suppose that for some a > 0, f(z) = (af_z,) with ¢ € c¥[-a — kh,a + kh).
Then there ezists such ¢ > 0 that

T30 - [ f@)e 1< = (124)

for all sufficiently large n.

The authors have been unable to construct a quadrature rule for singularities of the form
(119), which is independent of the number n of points used in the uncorrected trapezoidal rule.
However, this is a relatively minor deficiency since the weights in such cases can be precomputed
and stored.
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5 Numerical Results

Algorithms have been implemented for the construction of the quadratures Tgm, T_;‘,‘ gm» T:., gm s
Tp",, gm > and T)..

The correction coefficients 8™ are calculated using (25), and (52). In the tables in Section
7.1 the correction coefficients for orders of convergence upto 43 are tabulated. In Table 1,
convergence results are presented for some of the rules Tjm. Column 1 of this table contains
the number of nodes discretizing the interval [0, 1] was discretized. In column 2 are the relative
errors of the standard 1-sided 4th order corrected trapezoidal rule, given here for comparison.
Columns 3-9 contain the relative errors for the rule Tj. for various orders of convergence m.

In all cases the integrand was of the form
f(z) = sin(200z) + cos(201z). (125)

The quadrature weights for the rules T7% gm> T"",‘ gm> T;‘,, gm> and T7% are all obtained as solutions
of linear systems, and it is easy to see t;la-t the linear systems used for determining these weights
(see, for example (70), (71)) are very ill-conditioned. In order to combat the high condition
number, all systems were solved using the mathematical package MAPLE using 200 significant
digits.

In order to evaluate the coefficients  for singularities of the form s(z) = |z|* or s(z) = log(]z]),
we start with the right-end corrected trapezoidal rule Tj. of order 40. Under these conditions,

1
bad =% |< O(—5=%) (126)

for all —k < i < k,k # 0 (see Theorem 4.6) and for reasonable k, the convergence of o to
7; is almost instantaneous. The construction of the quadrature weights u; is performed in a
similar manner. In Section 7.2 the cocfficients v; are listed for the singularities log(|z|), Izl%,
Im[‘%, {zlé, |z|'§, l:z:l"ol and for the same singularities, the quadrature weights u; are listed
in Section 7.3. In Table 2, convergence results are presented for some of the rules T7, ;m for
various singularities. Column 1 of this table contains the number of nodes in the discretization
of the interval [0, 1]. In Table 3, convergence results are presented for some of quadrature rules
T:,,ﬁ,,, for various singularities. Column 1 of this table contains the number of nodes in the
discretization of the interval {—1,1]. In all cases the integrand was of the form

f(z) = (sin(20z) + cos(21z)) + (sin(23z) + cos(22z))s(z), (127)

and the order of convergence used was 10.
Finally, algorithms have been implemented for evaluating quadratures T;,, to integrate func-
tions of the form

£(z) = d(z)log(|z])- (128)
The quadrature weights are obtained by solving the linear system (110). Note that the quadra-
ture weights are independent of the discretization h, except for the first weight po which is
calculated using the formula (115). Presented in Table 4 are convergence results for integrating
functions of the form (128) where,

#(z) = sin(200z) + cos(201z). (129)
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Column 1 shows the number of nodes in the discretization of the interval [-1,1]. Columns 3-6
show the relative errors for the various orders of convergence m as shown.
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Table 1: Convergence of quadrature rules Tj» for non-singular functions

N =4 m=3 m=9 m=15 m=21 m=27 m=233 m=39
20 .230E-01 .112E-01 .131E-01 .136E-01 .138E-01 .138E-01 .138E-01 .138E-01
40 J122E-01  .120E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01 .122E-01
80 .457E-02 .108E-02 .654E-03 .430E-03 .292E-03 .202E-03 .142E-03 .100E-03
160  .216E-03 .804E-04 .223E-05 .743E-07 .264E-08 .972E-10 .365E-11 .139E-12
320 .310E-05 .522E-05 .292E-08 .199E-11 .116E-14 .304E-15 .306E-15 .306E-15
640 .191E-06 .328E-06 .304E-11 .105E-15 .703E-16 .703E-16 .703E-16 .703E-16
1280 .239E-07 .20S5E-07 .266E-14 .345E-15 .346E-15 .346E-15 .346E-15 .346E-15

Table 2: Convergence of quadrature rules T ym for singular functions (10th order)

N ___log(lz]) lz|* lz| jz|* |z| ¥

40 0.29128E-03 0.25056E-04 0.11650E-02 0.42510E-04 0.53715E-03
80 0.72599E-07 0.30493E-07 0.98819E-06 0.53217E-07 0.52449E-06
160 0.56928E-10 0.17499E-10 0.10903E-08 0.32715E-10  0.49582E-09
320 0.65586E-13 0.59119E-14 0.76827E-12 0.12962E-13 0.31491E-12
640 0.18596E-14 0.16376E-14 0.66613E-15 0.17208E-14 0.13878E-14

Table 3: Convergence of quadrature rules T:., gm for singular functions (10th order)

N log(z) |z|> =7 Jz} 2| ¥

40 0.57489E-03 0.49592E-04 0.23137E-02 0.84150E-04 0.10655E-02
80 0.14438E-06 0.60500E-07 0.19680E-05 0.10563E-06 0.10436E-05
160 0.11348E-09 0.34867E-10 0.21762E-08 0.65197E-10  0.98921E-09
320 0.13357E-12 0.13614E-13  0.15360E-11 0.28103E-13  0.62927E-12
640 0.61062E-15 0.16237E-14 0.16237E-14  0.50515E-14

0.42188E-14

Table 4: Convergence of the quadrature rule T} pm for functions f(z) = ¢(z)log(|z])

N m=3 m=9 m=15 m=21 m=27 m=33 m=39
40 .546E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01 .536E-01
80 .291E-03 .764E-03 .265E-03 .129E-03 .640E-04 .300E-04 .107E-04
160 .282E-03 .241E-04 .209E-05 .255E-08 .482E-09 .125E-11 .143E-13
320 437E-04 .190E-04 .912E-06 .392E-09 .162E-09 .294E-12 .147E-14
640 .S73E-05 .315E-05 .468E-06 .166E-07 .108E-09 .583E-13 .119E-14
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6 Generalizations and Conclusions

A group of algorithms has been presented for the construction of high-order corrected trape-
zoidal rules for functions with various types of singularities, both end-point and in the middle of
the interval of integration. In many cases, the corrected rule can have effectively an arbitrarily
high order, without the attendent growths of correction weights. The drawback of the approach
is the need for the integrand to be available in a small area outside the interval of integration,
whenever the singularity being corrected is on one of the ends of that interval.

The algorithm of the present paper admits several straightforward generalizations.

1. There are classes of singularities not covered by this paper for which some versions of
Theorem 4.1 can be fairly easily proven.
2. The quadratures can be easily modified to handle functions of the form

fz) = 9(=) + 3" 6:(z) - i), (130)

=1

where ¥, ¢1,02,...,0m are smooth functions, and sy, s, ..., S, are several different singularities.
3. Quadrature rules developed of this paper have fairly obvious analogues in two and three
dimensions. However, the proofs of the multidimensional versions of the theorems in this paper
are somewhat more involved than those of their one dimesional counterparts. These results will
be reported at a later date.

4. High-order corrected trapezoidal rules can be used to approximate integrals

/1r cos(a cos 0)d6 (131)
0
by rewriting the integral as
¢ cos(z)
——dz 132
./—c N (132)

and using the quadrature rule T,» defined in (120). This rule proves to be of fundamental
importance in the development of the Fast Bessel Transform (see, for example [10}).
5. Integral equations of the form

/0 ¥ a(w)log(|z - w])dse = C (133)

are encountered in the study of partial differential equations (see, for example [11]). In order to
apply the Nystrom algorithm to the integral equation (133), the left-hand side is decomposed
into a sum

L
/0 o(w)log(|z ~ w|)ds,, = I(z) + J(2), (134)
where the integral operators I and J are defined by the formulae
1(z) = / ‘ a(w)log(| ol \)ds (135)
= Jo @ =) '
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12 = [ a(wlog(1v™(2) - 77 (w) Ddsu. (136)

Now, the integral operator I can be discretized by the uncorrected trapezoidal rule and the
operator J can be discretized by the corrected trapezoidal rule T} defined in (109) to a rapidly
convergent finite-dimesional approximation to (133).
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7 Correction weights for Non-singular and Singular functions

7.1

Quadrature Weights S for Non-singular Functions

/, ' flz)dz =~

m
= Ta(f)+h D (f(b+kh)~ f(b—~kh) = f(a+kh) + f(a — kh))AT.

Tam(f)

m-1

k=1

m=3

m=5

m=7[]

0.4166666666666667D-01

0.5694444444444444D-01
-0.7638888888888889D-02

0.6483961640211640D-01

-0.1395502645502646D-01

0.1579034391534392D-02

m=9

m=11

m=13

0.6965636022927690D-01
-0.1877177028218695D-01
0.3643353174603175D-02
-0.3440531305114638D-03

0.7289995064734647D-01
-0.2247873075998076D-01
0.5728518443362193D-02
-0.9618798768104324D-03
0.7722834328737106D-04

0.7523240913673701D-01
-0.2539430387171893D-01
0.7672233851187638D-02
-0.1739366039940610D-02
0.2539297439987751D-03
-0.1767014007114040D-04

m =15

m =17

m=19

0.7699017460749256D-01
-0.2773799116605967D-01
0.9429999321943197D-02
-0.2591615965155427D-02
0.5202578456284055D-03
-0.6683840498737985D-04
0.4097355409686621 D-05

0.7836226334784643D-01
-0.2965891540255508D-01
0.1100166460634853D-01
-0.3464763345380610D-02
0.8560837610996297D-03
-0.1531936403942661D-03
0.1753039202853559D-04
-0.9595026156320693D-06

0.7946301859082432D-01
-0.3126001393779562D-01
0.1240262582468400D-01
-0.4326893325894750D-02
0.1240963216686299D-02
-0.2763550661820004D-03
0.4447195391960246D-04
-0.4581897491741901D-05
0.2263996797568645D-06

m=21

m =23

m=25

0.8036566134581083D-01
-0.3261397807027540D-01
0.1365243887004996D-01
-0.5160102022805384D-02
0.1657567565141616D-02
-0.4325816968527443D-03
0.8735769567235570D-04
-0.1275061020655204D-04
0.1193747238089644D-05
-0.5374153101848776D-07

0.8111924751518991D-01
-0.3377334140778168D-01
0.1477039637407387D-01
-0.5955094025666833D-02
0.2092328816706471D-02
-0.6167158739860944D-03
0.1470308086322377D-03
-0.2710805091870410D-04
- 0.3616565358265304D-05
-0.3101244008783459D-06
0.1281914349299291D-07

0.8175787507251367D-01
-0.3477689899786187D-01
0.1577395396415406D-01
-0.6707762218226974D-02
0.2535074812330083D-02
-0.8233306719437802D-03
0.2231520499850693D-03
-0.4885697701951313D-04
0.8277049522724384D-05
-0.1016258365190328D-05
0.8036239225326941D-07
-0.3070147670921659D-08
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m =27

m =29

m = 31

0.8230598039728972D-01
-0.3565386751750355D-01
0.1667832775003454D-01
-0.7417074991466566D-02
0.2978395295604828D-02
-0.1047324179282599D-02
0.3146160654817536D-03
-0.7872277799802227D-04
0.1591319181836592D-04
-0.2491841417488210D-05
0.2832550619442283D-06
-0.2077714429849625D-07

0.8278153337505391D-01
-0.3642664110637037D-01
0.1749655860883470D-01
-0.8083781617155592D-02
0.3417018075663398D-02
-0.1284180480514226D-02
0.4198855326958103D-03
-0.1170025842576793D-03
0.2714748278587396D-04
-0.5092371734040995D- 05
0.7409483976575184D-06
-0.7838889284981948D-07
0.5360956533353892D-08
-0.1778140387386520D-09

0.8319804338077547D-01
-0.3711265758638233D-01
0.1823974312884766D-01
-0.8709621212955971D-02
0.3847282797776159D-02
-0.1530046036007233D-02
0.5372304569083815D-03
-0.1636490137583287D-03
0.4245334246577455D-04
-0.9173934315347822D-05
0.1604355866780116D-05
-0.2179294939201383D-06
0.2155763344330162D-07
-0.1380750254862090D-08
0.4296200771869423D-10

m=33

m = 35

m = 37

0.8356586223906441D-01
-0.3772568901686392D-01
0.1891730418359046D-01
-0.9296840793733073D-02
0.4266725355474089D-02
-0.1781711570625991D-02
0.6648868875120992D-03
-0.2183589125884934D-03
0.6214890604463385D-04
-0.1506576957398094D-04
0.3044582263334879D-05
-0.4984930776645727D-06
0.6348092756603319D-07
-0.5895566545002414D-08
0.3550460830740161D-09
-0.1040280251184406D-10

0.8389305571446765D-01
-0.3827675171227989D-01
0.1953724971593344D-01
-0.9847903489149048D-02
0.4673760300951798D-02
-0.2036550840838121D-02
0.8011551083894191D-03
-0.2806529564181254D-03
0.8640764426675015D-04
-0.2305218544957479D-04
0.5240846629123186D-05
-0.9942016492531560D-06
0.1529838641028607D-06
-0.1833269916550451D-07
0.1604311636472664D-08
-0.9116340394367584D-10
0.2523768794744743D-11

0.8418600148964681D-01
-0.3877475953008444D-01
0.2010640150771007D-01
-0.1036531420894598D-01
0.5067442370362510D-02
-0.2292444185955085D-02
0.9444553816549185D-03
-0.3499410006344108D-03
0.1152776626902024D-03
-0.3336290631509345D-04
0.8369617098659884D-05
-0.1790615950589770D-05
0.3199739595444088D-06
-0.4643199407153423D-07
0.5253570715177823D-08
-0.4346230819394555D-09
0.2337667781591708D-10

|| -0.6133208535638922D-12
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m =39

m = 41

m = 43

0.8444980879146044D-01
-0.3922700061890783D-01
0.2063059004248263D-01
-0.1085151806728575D-01
0.5447289134690455D-02
-0.2547701211583463D-02
0.1093355313271473D-02
-0.4255727119317083D-03
0.1487041779510615D-03
-0.4617000028477128D-04
0.1259595810865357D-04
-0.2980436293579194D-05
0.6019365929090900D-06
-0.1016414607443390D-06
0.1395254130438025D-07
-0.1495069020432704D-08
0.1172703286200068D-09
-0.5987202298631028D-11
0.1492744845851982D-12

0.8468861878191560D-01
-0.3963949060242128D-01
0.2111481741443320D-01
-0.1130884391857241D-01
0.5813149815719777D-02
-0.2800989375372994D-02
0.1246579017292300D-02
-0.5068750854937796D-03
0.1865518346092672D-03
-0.6158941596033656D-04
0.1806736367095093D-04
-0.4659163000193157D-05
0.1042814313838009D-05
-0.1993926296380813D-06
0.3190683763180230D-07
-0.4154964772643378D-08
0.4227988947523140D-09
-0.3152674188244618D-10
0.1531756684278896D-11
-0.3638111051825521D-13

0.8490582345073519D-01
-0.4001723785254232D-01
0.2156339227395194D-01
-0.1173947578371039D-01
0.6165108551649863D-02
-0.3051271143145499D-02
0.1403005122150116D-02
-0.5931791433463679D-03
0.2286250628124040D-03
-0.7968542809071795D-04
0.2490991825775139D-04
-0.6921164516490830D-05
0.1691476513364548D-05
-0.3590633249061523D-06
0.6517156581265044D-07
-0.9908863701222516D-08
0.1227209106806963D-08
-0.1188835069924533D-09
0.8447500588821128D-11
-0.3914899117784468D-12
0.8877720031504791D-14

/o " fle)i

= TTlpn(f)

7.2 Quadrature Weights 7} for Singular Functions

k

= TRen(N+h D wf(z)

J=—k, #0

f s(z) = log(z) || s(z) =z || a(z)=z"3

-1 0.7518812338640025D+00 0.4911169802967502D4-00 0.1635135941723353D+01
-2 |t -0.6032109664493744D+400 -0.3176980828356269D+00 -0.1533115151360971D+01
1 0.1073866830872157D+01 0.7141080571189234D+00 0.2143719446940490D+4-01
2 || -0.7225370982867850D+4-00 -0.3875269545800468D+-00 -0.1745740237302873D+91

k=4

-1 0.1420113571035790D+4-01 0.8951854542876017D+4-00 0.3192416400365587D+01
-2 -0.3125287797178819D+01 -0.1631355661694529D+401 -0.8349519005997507D+01
-3 0.2592853861401367D+01 0.1216528022899115D4-01 0.7653118908743808D+01
-4 || -0.7648698789584314D+00 -0.3318968291168987D+00 -0.2415721426013858D+-01
1 0.2027726083620572D+01 0.1323278097869649D+01 0.4127731944814846D+01
2 || -0.3730238148796624D+401 -0.1996997843341944D4-01 -0.9431538570036398D+01
3 0.2914105643150046D+01 0.1392513231112159D4-01 0.8285519053356245D4-01
4 || -0.8344033342739005D+00 -0.3672544720151524D+400 -0.2562007305232722D+4-01
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k=6

-1
-2
-3
-4
-5

D Ul WD

0.2051970990601252D+01
~0.7407035584542865D+01
0.1219590847580216D+02
~0.1064623987147282D 402
0.4799117710681772D+-01
-0.8837770983721025D+-00
0.2915391987686506D+-01
-0.8797979464048396D+-01
0.1365562914252423D+02
-0.1157975479644601 D402
0.5130987287355766D+01
-0.9342187797694916D+00

0.1265469280121926D+01
-0.3802563634358600D+01
0.5639024206133662D+01
-0.4569107975444730D+01
0.1943368974038607D+01
-0.3411137981342110D+-00
0.1878261417316043D+01
-0.4649333971499730D+-01
0.6444550155059975D+01
-0.5048462684259424D+01
0.2104363245869803D+01
-0.3644552148433214D+00

0.4710262208645700D+01
-0.2025763995934342D+02
0.3690977699143199D+-02
-0.3458675005305701D+02
0.1646218520818186D+-02
-0.3167334195084358D+01
0.6026290938505443D+-01
-0.2274216675280301D+02
0.3978973181300623D+02
-0.3656337403895339D+02
0.1720419649716102D+02
-0.3285178657691059D+-01

k=8

-1
-2
-3
-4
-5
-6
-7

@ =1 DU WD

0.2661829001135098D 01
-0.1336900704886964D+02
0.3292331764210170D 402
-0.4773939140223472D+02
0.4288580615706955D+02
-0.2359187584186291D+-02
0.7312948709641004D+-01
-0.9817367313018633D+00
0.3760781014023317D 401
-0.1580903864167977D+-02
0.3674321491528176D +02
-0.5179306469244793D+02
0.4575621781632506D+-02
-0.2489478606121209D+02
0.7656685336983747D+01
-0.1021900172352320D+01

0.1616169645940613D4-01
-0.6771767050468779D+01
0.1503196947284841D+02
-0.2024989176835058D+4-02
0.1717995995110646D+02
-0.9018058251167396D+01
0.2686335493243228D+01
-0.3483500116200692D+00
0.2398992474897278D+01
-0.8260181779465771D+01
0.1714292235263991D+02
-0.2233476105127601D+02

0.1857536706216344D+02 .

~0.9622728690582360D+4-01
0.2839683305088209D+01

-0.3656611549965858D+400

0.6202998068889192D+01
-0.3714709770899691D+02
0.1012860584122768D+03
-0.1577736812789053D+-03
0.1497778690096803D+03
-0.8617211496827355D+4-02
0.2773685303768452D+02
-0.3846246456428401D+01
0.7870429343373961D+01
-0.4150717430533848D+02
0.1088399244984859D+-03
-0.1663887812447046D-+03
0.1562272759566466D+03
-0.8923488368760573D+02
0.2857613653609836 D +02
-0.3947565212882627D+-01

k= 10

L]
[ =S T T R L
© W 2D U WA

O W -1 N ™

el

0.3256353919777872D+01
-0.2096116396850468D+-02
0.6872858265408605D+02
-0.1393153744796911D+03
0.1874446431742073D+03
-0.1715855846429547D+03
0.1061953812152787D+03
-0.4269031893958787D+02
0.1009036069527147D+02
-0.1066655310499552D+-01
0.4576078100790998D+01
-0.2469045273524281D+02
0.7648830198138171D+-02
-0.1508194558089468D+-03
0.1996415730837827D+-03
-0.1807965537141134D+-03
0.1110467735366555D+03
-0.4438764193424203D+-02
0.1044548196545488D+02
-0.1100328792904271D+-01

0.1953545360705999D+01
-0.1050311310076629D+-02
0.3105516048922884D +02
-0.5850644296241638D+02
0.7437254291687940D 402
-0.6498918498319249D+02
0.3866979933460322D+02
-0.1502289586232686D+02
0.3445119980743215D+-01
-0.3544413204640886D+00
0.2895451608911961D+01
-0.1277820188943208D-+02
0.3534092272477722D+-02
-0.6441908403427060D+02
0.8029833065236247D+02
-0.6926226351772149D+02
0.4083390088012696D+02
-0.1575467189373152D+02
0.3593677332216888D+01
-0.3681517162342983D 400

0.7677722423353747D+01
-0.5894517227637276D+02
0.2140398605114418D+03
-0.4662332548976578D+03
0.6631353162140867D+-03
-0.6351002576675097D+03
0.4083227672169233D+03
-0.1696285390723725D+03
0.4126838241810020D+-02
-0.4476202232026015D+01.
0.9675787330957780D+4-01
-0.6561769910673283D+02
0.2294242274362024D+03
-0.4907643918974356D+03
0.6906485447124722D+03
-0.6568499770824342D+03
0.4202275815793937D+03
-0.1739340651258045D+-03
0.4219582451243715D+02
-0.4566454997023116D+-01
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1

s(z) = zrﬂ

s(z)=z"% ||

s(z)=z"15

k=2

]
2

0.553409.724301567D+00
-0.3866961728429464D+00
0.8032238407479816D+4-00
-0.4699368403351921D+00

0.1181425202719417D+01
-0.1060178333186577D+01
0.1613104391254726D+-01
-0.1234351260787565D+01

0.9469239981678674D+-01
-0.9440762908621185D+01
0.1027199835611538D4-02
-0.9800475429172870D+01

k=4

1
-2
-3

L K7

0.1020832071388625D+01
-0.1983186102544885D+01
0.1533381243224831D+4-01
-0.4298392181270347D+00
0.1498331817034082D+401
-0.2412699293646369D+01
0.1747071103625803D+01
-0.4738916209550530D+-00

0.2282486199885223D+01
-0.5650813876770368D+01
0.5015176492677874D+-01
-0.1549698701260824D+01
0.3083643341213459D+-01
-0.6532393248536034D+01
0.5514329562635926D+01
-0.1662729769845256D+01

0.1887299140127902D+02
-0.5533585657332243D+-02
0.5446669568113802D+02
-0.1798256931439028D+02
0.2031702799746152D+02
-0.5722348457297536D+02
0.5565641900092846D+02
-0.1827122362011895D+02

k=6

-1
-2
-3
-4
-5

Db W

0.1453673785846622D+01
-0.4645097217879781D+01
0.7134681085431341D+01
-0.5928340311544518D4-01
0.2571788299099303D+-01
-0.4588965281604129D+-00
0.2135823382632839D+01
-0.5636852769577275D+-01
0.8109443112743051D+-01
-0.6522597930471829D+-01
0.2775248991033700D+01
-0.4888738991530396D+00

0.3345150279872830D+-01
-0.1359274618599862D+02
0.2395745376553084D+02
-0.2193610831631847D+02
0.1025817941642386D+02
-0.1946039989983884D+-01
0.4476264293482232D+01
-0.1561643865091390D+02
0.2622632514046215D+02
-0.2345727234258157D+02
0.1081909216811830D+-02
-0.2033859578093758D+01

0.2823540877500425D+02
-0.1374572775395727D+03
0.2701409207262959D+-03
-0.2668390934875709D+03
0.1321842198719930D+-03
-0.2624585302793210D+02
0.3025125337714398D+4-02
-0.1418090842954654D+03
0.2756109143783281D+03
-0.2708086499560764D+03
0.1337381187138368D+-03
-0.2650087753598454D+02

1

s@) =23 ||

s(z) = z-3

s(z) = z-716

k=8

-1
-2
-3
-4
-5
-8
-7

Oﬂ@‘nbu&h‘:ﬂ

0.1866196808675184D+01
-0.8307135206229368D+01
0.1909144688191794D+02
-0.2636153756127239D+-02
0.2279974850816623D+02
-0.1215894117169713D+02
0.3671126621978929D+4-01
-0.4816958588438264D+00
0.2736714477854559D+01
-0.1004886340865174D+02
0.2164374286136325D 402
-0.2894336017656429D+02
0.2456068654847544D4-02
-0.1293400965739323D+02
0.3870327870200545D+01
-0.5044475379801205D+00

0.4383819645513359D+-01
-0.2478753951112947D+02
0.6535630997043997D+02
-0.9943323854718145D+02
0.9269762740745608D+02
-0.5255448820422732D+02
0.1670932578919686D-+02
-0.2292774564229746D+01
0.5819143597164960D+-01
-0.2833732911493431D+-02
0.7130006863921132D+02
-0.1060508801269256D+-03
0.9756101768474124D+-02
-0.5482984235409941D+4-02
0.1732510108672746D+02
-0.2366321397723911D+-01

0.3756991225931813D+02
-0.2556568200490798D+-03
0.7531560640068682D+-03
-0.1239060653686887D+-04
0.1226707735965091D+04
-0.7300983324043684D+-03
0.2417364444480294D+03
-0.3433771074231191D+02
0.4011575033483495D+02
-0.2633133438634569D+-03
0.7675751360752552D+03
-0.1256487025699375D+04
0.1240341295810031 D04
-0.7368055436813910D+03
0.2436290214530279D-+03
-0.3457193022558553D+4-02

30




= 10

U
L= T L I T
[=J"- 2 N B - N RN CR

O W00 =1 DU W N

—

0.2264788460960479D+01
-0.1292939169279749D+02
0.3957101757244672D+02
-0.7639785056816069D+02
0.9898237584503627D+02
-0.8785457780822613D+02
0.5297228202020211D+02
-0.2081786990425939D+02
0.4823072180507942D+01
-0.5007874588446741D+00
0.3311620888787288D+-01
-0.1559126529305869D+-02
0.4475277794263923D+02
-0.8371954827689160D+02
0.1064593309138400D+03
-0.9333016061951656D+02
0.5578209928784346D+-02
-0.2177894078450347D-+02
0.5020172381264958D+01

-0.5191450872697767D4-00

0.5405454633516052D+01
-0.3917131575943378D+02
0.1375220761115852D+03
-0.2925218664728695D+03
0.4085024389395215D+03
-0.3854463863750540D+03
0.2447281804852179D+03
-0.1005754937354166D+03
0.2423820803863685D+02
-0.2606987282704575D+01
0.7126578020279918D+01
-0.4460041915515531D+02
0.1496138805763186D+03
-0.3113382992063869D +03
0.4292142311074982D+03
-0.4015725721227424D+03
0.2534431424358416D+03
-0.1036930201058000D+03
0.2490333391795860D+02
-0.2671164050811178D+01

0.4688376828974556D+02
-0.4098330186123370D+403
0.1609252630383255D+04
-0.3705300977598581 D404
0.5500852053333245D+04
-0.5454835999290140D+04
0.3611006247703252D+04
-0.1538237727142339D+04
0.3825346496620566D+03
-0.4230611481851793D+02
0.4993063308066224D+02
-0.4215785445878369D+03
0.1638730173971623D4-04
-0.3755162938068600D+04
0.5559352058138100D+04
-0.5502789929350287D+04
0.3638060903851112D+04
-0.1548279140995316D+04
0.3847470160018897D+03
-0.4252574395098780D+02

7.8 Quadrature Weights uf for Singular Functions

~

b
f(z)dz
-b

mem(f)

{
= Them(f) + Thom (f) + b Y 1, (f(=) + f(z-5))

J=l
JL s(z) = log(z) L s(z) = z3 “ s(z) = z=3
k=1
1 0.1825748064736159D+01 0.1205225037415674D+-01 0.3778855388663843D+-01
2 || -0.1325748064736159D+401 || -0.7052250374156737D+00 || -0.3278855388663843D+01
k=2
1 0.3447839654656362D+-01 0.2218463552157251D+01 0.7320148345180434D+-01
2 || -0.6855525945975443D4-01 || -0.3628353505036473D+401 | -0.1778105757603391D+02
3 0.5506959504551413D+401 0.2609041254011273D+01 0.1593863796210005D+02
4 || -0.1599273213232332D+01 || -0.6991513011320512D+00 {| -0.4977728731246580D+-01
- k=3
1 0.4967362978287758D+01 0.3143730697437969D+-01 0.1073655314715114D+02
2 || -0.1620501504859126D+02 {i -0.8451897605858329D+01 || -0.4299980671214643D+02
3 || 0.2585153761832639D+02 || 0.1208357436119364D+02 || 0.7669950880443822D+02
4 || -0.2222599466791883D+02 || -0.9617570659704153D+01 }{ -0.7115012409201039D+02
5 || 0.9930104998037539D+01 0.4047732219908410D+-01 0.3366638170534288D+02
6 || -0.1817995878141594D+-01 || -0.7055690129775324D+00 || -0.6452512852775417D+01
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k=4
T | 0.6422610015158415D+01 || 0.4015162120837891D+01 || 0.1407342741226315D+02
2 || -0.2917804569054941D+02 || -0.1503194882993455D+02 || -0.7865427201433540D+02
3 | 0.6966653255738346D+02 || 0.3217489182548832D+02 || 0.2101259829107628D+03
4 || -0.9953245609468264D+02 || -0.4258465281962659D+02 || -0.3241624625236100D+03
5 || 0.8864202397339461D+02 || 0.3575532701326990D+02 || 0.3060051449663269D+03
6 || -0.4848666190307500D4-02 || -0.1864078694174975D+02 || -0.1754069986558793D+03
7 | 0.1496963404602475D+02 || 0.5526018798331437D+01 || 0.5631298957378288D+02
8 || -0.2003636903654183D+01 || -0.7140111666166550D+00 || -0.7793811669311027D+01
k=5
1 0.7832432020568779D+01 0.4848996969617959D+01 0.1735350975431153D+02
2 || -0.4565161670374749D+02 -0.2328131499019837D+02 || -0.1245628713831056D+03
3 0.1452168846354678D+03 0.6639608321400605D+02 .0.4434640879476441D+4-03
4 ]| -0.2901348302886379D+-03 -0.1229255269966870D 403 || -0.9569976467950934D+03
5 0.3870862162579900D+4-03 0.1546708735692419D+03 0.1353783860926559D+04
6 || -0.3523821383570680D+03 -0.1342514485009140D+03 || -0.1291950234749944D+04
7 0.2172421547519342D4-03 0.7950370021473013D+02 0.8285503487963169D+4-03
8 || -0.8707796087382989D+-02 -0.3077756775605837D+02 || -0.3435626041981771D4-03
9 0.2053584266072635D4-02 0.7038797312960103D+01 0.8346420693053734D+02
10 || -0.2166984103403823D+01 || -0.7225930366983869D+00 || -0.9042657229049132D+-01
| ﬂ s(z) =23 " s(z) =z-3 “
k=1
1 0.1356633013178138D+01 0.2794529593974142D+01
2 || -0.8566330131781384D+00 ] -0.2294529593974142D+401
k=2
1 0.2519163888422707D+01 0.5366129541098682D+01
2 |t -0.4395885396191253D+01 -0.1218320712530640D 402
3 0.3280452346850634D+01 0.1052950605531380D 402
4 || -0.9037308390820877D+00 || -0.3212428471106080D+01
k=3
T ]| 0.3589497168479460D+01 || 0.7821414573355062D+01
2 || -0.1028194998745706D+02 || -0.2920918483691252D+02
3 (| 0.1524412419817439D+02 || 0.5018377890599299D+02
4 || -0.1245093824201635D402 || -0.4539338065890004D+02
5 0.5347037290133003D+01 0.2107727158454216D+02
6 || -0.9477704273134525D400 || -0.3979899568077642D+01
k= 4
1 0.4602911286529744D+01 0.1020296324267832D+02
2 || -0.1835599861488110D+02 || -0.5312486862606378D-+02
3 0.4073518974328119D+02 0.1366563786096513D+03
4 ]| -0.5530489773783668D+02 || -0.2054841186741071D+03
5 0.4736043505664168D+02 0.1902586450921973D+03
6 |} -0.2509295082909035D+02 || -0.1073843305583267D+-03
7 0.7541454492179474D+01 0.3403442687592432D+02
8 || -0.9861433968239469D+00 || -0.4659095961953657D 401
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k=5
’ 0.5576409349747767D+01 0.1253203265379597D+4-02
-0.2852065698585619D+02 -0.8377173491458909D+02
0.8432379551508595D+-02 0.2871359566879038D+03
. -0.1601173988450523D+03 |i -0.6038601656792564D+03

0.2054417067588763D+03
-0.1811847384277427D+03 || -0.7870189584977965D+03
0.1087543813080456D+03 0.4981713229210595D+4-03
-0.4259681068876286D+-02 || -0.2042685138412166D+03
0.9843244561772901D+-01 0.4914154195659545D+-02
-0.1019932546114451D+-01 || -0.5278151333515754D+-01

0.8377166700470196D+03

O WO 00 3 O Ut e W N =

[

7.4 Quadrature Weights p} for Singular Functions

b
f(z)dz = Topem(f)
-b

[
= TRem () +TLem (f)+hY_ pi(d(z;) + é(2-,))

1=0

Notie: po is given for & = 0.01, For any other &, the following formula is used to calculate po.

P
po = (—.9189385332046727417803 + 0.5log(h)) = Y _ o,

1=1

L_____________m=3]

-0.3221523626198730D4-01

m=5|

m=7J]

-0.3191075169140337D+01

-0.3044845705839327D-01

-0.3181467102013171D+01
-0.4325921322794724D-01
0.3202689042388491D-02

m=9
-0.3176811195217937D+01
-0.5024307342079858D-01
0.5996233119529027D-02
-0.4655906795234226D-03

m=11

m=13u

e

-0.3174071153542312D+01
-0.5462714010179898D-01
0.8188266460029230D-02
-0.1091885919666338D-02
0.7828690501786438D-04

-0.3172268092036274D+01
-0.5763224261186158D-01
0.990546789435u714D-02
-0.1735836457536894D-02
0.2213870245446548D-03
-0.1431001195267904D-04

-0.3170992165916170D+01
-0.5981954453204053D-01
0.1127253159446256D-01

0.2761744848710794D-05

| m=15|] m=l7l

P e

-0.3170041916020681D+01
-0.6148248184914681D-01
0.1238115647253341D-01

0.1051436637368180D-04
-0.5537586803550720D-06

m=19

-0.6278924541603596D-01
0.1329589096935583D-01

-0.2343420324253269D-02 -0.2897732763288696D-02 -0.3396678852464559D-02
0.4036621845595672D-03 0.6052303442088134D-03 0.8131245480320894D-03
-0.4745095013720858D-04 -0.9784299004952013D-04 -0.1618104373797589D-03

0.2422167651587582D-04
-0.2381400032647607D-05

0.1142275845182835D-06

-0.3169306861514305D 401
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m =21

m=23lL

m=25J]

-0.3168721384920306D+01
-0.6384310328523506D-01
0.1406233305604667D-01
-0.3843770069700536D-02
0.1019474340602541D-02
-0.2355067918692057D-03
0.4387403771306165D-04
-0.6066217757119951D-05
0.5477355521032650D-06
-0.2408377597694342D-07

-0.3168244070581230D+-01
-0.6471094753809971D-01
0.1471321624569456D-01
-0.4244313571022683D-02
0.1219746091263614D-02
-0.3156154921336350D-03
0.6890800654569580D-04
-0.1195656336479857D-04
0.1529459820049702D-05
-0.1274231726028842D-06
0.5166969831297037D-08

-0.3167847493678468D+01
-0.6543800519316396D-01
0.1527249136497475D-01
-0.4603847576274231D-02
0.1411497560731106D-02
-0.3995067600256630D-03
0.9851668933111745D-04
-0.2018119747186014D-04
0.3260961737325821D-05
-0.3871484601943021D-06
0.2990271150667017D-07
-0.1124351894335142D-08

I

m=29]L

m=3lu

m=27ﬂ

-0.3167512774719844D+-01
-0.6605594788600917D-01
0.1575801776649599D-01
-0.4927531843955059D-02
0.1593569961301572D-02
-0.4851878897058822D-03
0.1318371286512027D-03
-0.3070344146767653D-04
0.5891522736279919D-05
-0.8882076980903206D-06
0.9822897121976360D-07
-0.7065765782430224D-08
0.2475589120039617D-09

-0.3167226492889164D+01
-0.6658761414298577D-01
0.1618335077207727D-01
-0.5219948285292188D-02
0.1765579632676354D-02
-0.5711927253932730D-03
0.1680496910458935D-03
-0.4337783830581833D-04
0.9512778975749005D-05
-0.1711220479787840D-05
0.2413616289062888D-06
-0.2495734799324587D-07
0.1678885488869214D-08
-0.5505102218712507D-10

-0.3166978846772530D+01
-0.6704988689403577D-01
0.1655894738230538D-01
-0.5485075304276741D-02
0.1927601699833581D-02
-0.6564674975812873D-03
0.2064233385304999D-03
-0.5799637068090648D-04
0.1416413018600433D-04
-0.2924616447680532D-05
0.4941524555505996D-06
-0.6540388025633560D-07
0.6345793057687260D-08
-0.4007478791366100D-09
0.1234631631962446D-10

m=33
~0.3166762511619708D+01
-0.6745551530557688D-01
0.1689299430945688D-01
-0.5726331418330602D-02
0.2079973982393914D-02
-0.7402722529894703D-03
©.2463303649153491D-03
-0.7432197238379932D-04
0.1984260034353227D-04
-0.4580836910292848D-05
0.8916453665775555D-06
-0.1418448246845963D-06
0.1767037741742959D-07
-0.1614096203394717D-08
0.9602551109604562D-10
-0.2789306492547372D-11

'

m = 35
-0.3166571903740287D+-01
-0.6781430660801560D-01
0.1719198706148916D-01
-0.5946641867196491D-02
0.2223175774156742D-02
-0.8221018482825148D-03
0.2872451625618713D-03
-0.9211101483880897D-04
0.2651349126416089D-04
-0.6715522004894009D-05
0.1466368276662483D-05
-0.2695610269256914D-06
0.4047684210333943D-07
-0.4759815470416764D-08
0.4105974377982503D-09
-0.2308426950559283D-10
0.6342175941576707D-12

m = 37

-0.3166402692325675D+-01
-0.6813392816895060D-01
0.1746114206017127D-01
-0.6148508116208072D-02
0.2357753273497796D-02
-0.9016249160749561D-03
0.3287354588014059D-03
-0.1111274006152623D-03
0.3412004557474223D-04
-0.9348560035479858D-05
0.2246527693132364D-05
-0.4646008810431617D-06
0.8082991536902293D-07
-0.1148532768136401D-07
0.1278405465017250D-08
-0.1044412720573741D-09
0.5564945021538352D-11
-0.1450213949229612D-12
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L

m =39

m=A ]

m =43 ||

-0.3166251466775081D+01
-0.6842046079112800D-01
0.1770469478902206D-01
-0.6334072100094389D-02
0.2484274171602103D-02
-0.9786376366601862D-03
0.3704506824517389D-03
-0.1311507079674222D-03
0.4259144483911754D-04
-0.1248611531858182D-04
0.3255027605557997D-05
-0.7428077534364396D-06
0.1457448522607878D-06
-0.2404950901525398D-07
0.3241558798437558D-08
-0.3423992518658962D-09
0.2656123735758442D-10
-0.1344809528411308D-11
0.3332744815245408D-13

-0.3166115504658825D+01
-0.6867878881201404D-01
0.1792611880692437D-01
-0.6505172477564357D-02
0.2603300521146428D-02
-0.1053029105125390D-02
0.4121099047922528D-03
-0.1519803191376791D-03
0.5184904980367620D-04
-0.1612303155465844D-04
0.4509136652480968D-05
-0.1119040467513331D-05
0.2428371655709533D-06
-0.4528845255185268D-07
0.71031845++:30958D-08
-0.910285442584N433D-09
0.9146251630327981D-10
-0.6753249440965090D-11
0.3256755515337396D-12
-0.7693371141612778D-14

-0.3166115504658825D+01
-0.6867878881201404D-01
0.1792611880692437D-01
-0.6505172477564357D-02
0.2603300521146428D-02
-0.1053029105125390D-02
0.4121099047922528D-03
-0.1519803191376791D-03
0.5184904980367620D-04
-0.1612303155465844D-04
0.4509136652480968D-05
-0.1119040467513331D-05
0.2428371655709533D-06
-0.4528845255185268D-07
0.7103184896000958D-08
-0.9102854426840433D-09
0.9146251630822981D-10
-0.6753249440965090D-11
0.3256755515337396D-12
-0.7693371141612778D-14
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Errata:

1. Equation (1) should be changed to

b n-2
[ fledz = (Y £z + £20) M)y Ay )£ F@) + fans) ~ flan)
a i=1

2. Equation (2) should be changed to

Tn(f) h(z f(.’E )+ f( 0)+f(zn—[)

11

)+ hZQJ (Han-)) - f f(z;))

J-..

3. The weights tabulated in Section 7.1 are - 3% | and not 3% as they should be.




